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Abstract

Thermodynamic influences on the behavior of acceleration

waves in a class of general Maxwellian non-conductors are
examined. It is shown that every acceleration wave must be
homentropic but that, in general, the entropic amplitude and
the amplitude of the wave are not proportional as they would
be in the special case of a simple non-conductor with fading
memory; a necessary and sufficient condition for the propor-
tionality of the two types of amplitudes is given. The
Bernoulli equation which governs the growth behavior of the
wave is derived and simple solutions are obtained for waves
which propagate into a homogeneous rest region of the body.
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Introduction

In his groundbreaking paper, Coleman [1] laid the foundations of a
comprehensive thermo-dynamical theor§ for simple materials with fading
memory; the theory established, was then used, by Coleman and Gurtin [2],
to study the effects of thermodynamic influences on the growth behavior
of acceleration waves propagating both in (simple) definite conductors
of heat and in non-conductors. Coleman's initial work was followed by
papers by Gurtin [3] and Wang & Bowen [4] in which attempts were made,
respectively, to clarify the basic structure of Coleman's original
theory and to propose an alternative thermodynamical theory for non-
linear materials which retains, at least, some of the best features of
Coleman's theory while avoiding some of its most striking drawbacks. Finally,
in the last of a major series of papers on the propagation and growth
behavior of waves in materials with memory, Coleman, Greenberg, and Gurtin
[5] put forth a concrete constitutive proposal for the mechanical response
of a Maxwellian material of class N (N 2 1, an integer) and proved that
every sufficiently smooth simple material with fading memory could be
coniidered a Maxwellian material of order N(N 2 2) relative to a well-defined
class of CN—1 motions; the growth behavior of acceleration waves (and
higher order waves) in Maxwellian bodies was examined and the.results were
then applied to study the growth behavior of waves propagating both in
smooth elastic materials and in sufficiently smooth simple materials with
fading memory .

In this paper we extend the previous work on Maxwellians materials
to take account of thermodynamic influences in the case where the material

j» a non-conductor of heat., After establishing certain kinematical and
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thermodynamical preliminaries, we present our definition of a Maxwellian
Bun-Conductor of Class 1 in §1. 1In §3, thermodynamical restrictions on the
respongse of a Maxwellian Non-Conductor, which are implied by the Clausius~Duhem
inequality, are examined; in doing so we make one basic assumption on the
underlying class of processes, which occurs in the definition of the
material, and impose certain smoothness requirements on both the stress and
temperature fields. Extending a result of Coleman & Gurtin (2], for waves

in simple non-conductors with memory, it is shown that every such wave in a
general Maxwellian Nonconductor must be homentropic. The intrinsic velocity
of an acceleration wave, which is propagating in a Maxwellian Non-Conductor,
is then calculated. Finally, we derive a differential equation which governs
the growth behavior of acceleration waves propagating in Maxwellian Non-
Conductors; in order to do this we find it necessary to relate the

entropic amplitude, as defined by Coleman & Gurtin [2], to the amplitude of
the wave. We find that, in a general Maxwellian Non~Conductor of Class 1,

the two amplitudes are not proportional and proportionality holds if and only

f a simple explicit relationship connects two of the constitutive coefficients

—

the wave front.

-

The differential equation which governs the growth behavior of acceleration
waves in Maxwellian Non-Conductors of Class 1 is a Bernoulli equation whose
coefficients are rather complicated functions involving not only the values of
the various constitutive quantities and their derivatives at the wave but also
the values of both the spatial and time derivatives of the deformation gradient
and entropy ahead of the wave. Several simplificatlons occur when we
congider acceleration waves which propagate into a homogeneous rest region of

the body. The solutions, of the governing differential equation, which are
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wall-known from previous work on the growth behavior of acceleration
waves in non-linear materials of various kinds, are recorded and
analyzed. In doing this, we make explicit the dependence of the
amplitude, of the wave, on the various thermodynamic entities which

occur in the theory; the previous results for acceleration waves

propagating in general Maxwellian materials of class 1, in the

purely mechanical theory, can not be deduced from ours by simply

suppressing all of the thermodynamical variables.

Mechanical and Thermodynamical Preliminaries

All the kinematical and mechanical concepts used in this paper
are one dimensional. Let R denote a closed interval of the real
line; a motion of the body is described by a function x = X(X,t)
which gives the location x at time t of the material point which has
the position X in the reference configuration; the density in R
is denoted by DR. Not only the motion X, but also the stress T,
the absolute temperature 9, the specific internal energy per unit
mass €, the specific entropy N, the heat flux q, the specific
extrinsic body force b, and the specific extrinsic heat supply
r are all to be regarded as functions of X and t; we assume that
PR i8 comstant over B.

When they exist, the derivatives x(X,t) = atX(X,t). x(X,t)
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aéx(x,t) and F(X,t) = axx(X,t) are called, respectively, the
vaelocity, acceleration, and deformation gradient. The laws of

balance of momentum and balance of energy take the forms

d (Xa : Xo,
(1.1,) T3 £ % xppdX = £ bppdX + T(Xgst) = T(X st)
B 8
(1.1,) d_ IX°‘<2.‘-3 + )ppdX = [X%(xb 4 r)p,dX + T(Xg,t)x(X ,t)
. at 3 2 PR o> T TPR B’ @’

B B

- T(Xa,t)x(xa,t) - q(X,,t) + q(Xa,t)

B

and (1.11), (1.12) are assumed valid at all times t and for every
pair of points Xa’XB in R. An admissible thepmdynamic process for
the body is a specification of the fields x, 6, T, n, €, @, b, r,
as functions of X and t, in such a way as to be compatible with

the balance laws (1.11), (1.12) and whatever constitutive relations
are prescribed for the material. In the present work those con-
sritutive assumptions take the following forms: Let J be an open

subset of (0,») and let E be the set of all functions from

JxIxRx (-, to) into the real numbers. Then

Definition 1.1 A material body is said to be a Maxwellian Non-

r"*'f Tty Wy
»

.

3

Conductor of class 1 if q=0 and if there exists a non-empty class
M consisting of pairs (x,n), where x is a Cl motion on RX(-w,to)
and n is a continuous entropy density function on RX(-w,to) such

that the following holds (1) f, é, and 6 exist whenever F and ﬁ
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do and (ii) corresponding to each £ = (x,n) ¢ M there exist

nine C1 functions AE’ BE’ ceees IE in E such that

(1.2,) T(X,t) = Ag(F;n;X;t)f + BE(F;n;X;t)ﬁ + C(F3n;X;t)
(1.2,) e(X,t) = DE(F;n;x;t)ﬁ + EE(F;n;X;t)ﬁ + Fp(F3nsiXst)
(1.2,) 8(X,t) = G, (F3n;X;t)F + H (Fin;X:td)n + I _(Fyn;Xst)

£ £ £

Finally, we take as our expression for the second law of

thermodynamics, the Clausius-Duhem inequality,

q(Xa,t) q(XB,t)

Xa r
/ gPrdX * (X, T)  B(RgD)

nppdX 2 £Xa

Xg B

(1.3)

d_
at

which must hold at all times t and for every pair of points Xa’xB

in R. We will examine the consequences of requiring
that (1.3) hold for all smooth admissible therodynamic processes

in a Maxwellian Non-Conductor.

2. General Properties of Acceleration Waves

We collect here those facts about acceleration waves which
are pertinent to a study of the propagation and growth behavior
of such waves in Maxwellian Non-Conductors. The material re-
presentation of a wave is a smooth one-parameter family of points
Y(t)eR, -°°<t<to , where Y(t) gives the material point (labeled)
by its position in R) at which the wave is to be found at time

t. The material trajectory Z of the wave is given by
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(2.1) I = (0] = Y(t), te(-=,t )}

and we call the wave an acceleration wave if the fields x(X,t)
and n(X,t) have the following properties: x, Q,F, and n are con-

tinuous functions of X ahd t jointly for all X and t, while X,

2
X x"

jump discontinuities across Z but are continuous in X and t jointly

F, 3XF, ﬁ, axn and also x, f, axf, 9 F, n 9 ain have (at most)
everywhere else. If f(X,t) , as a function of X, has only a jump

discontinuity at X = Y(t) , then the jump in f(X,t) across ] at

time t is defined by

- +

(2.2) [(fl = 1lim F(X,t) - lim f(X,t) = £(Y(t) ,t) - £(Y(t) ,t
XY (t)~™ X->Y(t)

whenever the intrinsic velocity, U, = %? Y(t), of the wave is positive,

£~ = £(Y(t)™,t) and £+ = Ff(Y(t)*,t) represent the limiting values
of f(X,t) immediately behind and just in front of the wave. By a
well-known theorem of Maxwell we have the following compatability

conditions for acceleration waves:

(2.3) [x]

oo 2
-U [F] = UL[3,F)

(2.4) [nl -Ut[axn]

Now let us assume that the extrinsic body force and the heat supply
are assigned in such a way that b(X,t), r(X,t), 5(X,t), and axr(x,t)

are continuous functions of X and t. Then for processes involving
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acceleration waves, the laws of balance of momentum and energy
(}.11) and (1.12) are together equivalent to the assertion that
for X # Y(t)

(2.5,) 3T + pgb = pok
(2.5,) P = TE + ppr

while for X = Y(t)

(2.6)  [2,T] ; (D

1 ppl%

(2.62) pR[e] [(TF]

In both (2.52) and (2.62) we have set q = 0 in accordance with

our assumption that the material is a non-conductor.

3. Thermodynamical Restrictions on Maxwellian Non-Conductors

We discuss here restrictions, on the con-
ctitutive equations of a Maxwellian Non-Conductor, which are implied
by the Clausius-Duhem inequality (1.3) when we make one ad-
ditional assumption on the class of processes M and impose certain

smoothness requirements on the stress and temperature fields.

t
R

D(X)|X=Y(t) = Pp 3 this assumption has the effect of eliminating

) We are assuming that Pr is constant over R so that p

= . . d ot : . : /
2 term involving % QR = (axp)tut in the equation which governs the

thn growth behavior of the amplitude a(t) = [X1(t), as wiil r¢ pointed
.- later.
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Definition 3.1 Let X be a point in R and & = (X,n) any process

in M. Denote by 6, and T respectively, the temperature and stress

£ g
fields, at any time t, at the particle X in the process £. Then
The constitutive equations of a Maxwellian Non-Conductor are
said to be compatible with thermodynamics if the Clausius-Duhem
inequality, in the local form

:l

T f 20

(3.1) -p(eg - eEn) + F £

is satisfied, whenever F and ﬁ exist and are continuous, i.e.,
at all (X,t) such that X # Y(t).

A
Now, let A and B be any two real numbers and let te(- w,to).

1f £ = (x,n) is a process in M we define a new process
E@ = (x%,n%) by

A
x(X,t) 5 =~w <t <t

(3.21) x%(X,t) = A A A A
X(X,t) + (t - t)AX 5 t st s ¢+ + k
A
n(X,t) ; =~ <t < t
(3.2,) na(X,t) = A A
2 t nH + t-DB stttk

where k > 0. We call &% an (A,B,t) continuation of £. Our ad-

ditional hypothesis for the class of process M then takes the follow-
ing form:

1) Let £ = (x,n) be a process in M. Then for any triple (A,B,%),
where A and B are real numbers and te(-w,to), there exists a kx > 0

A
such that £, the (A,B,t) continuation of £, is also in M.
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Remark 3.1 TFor the deformation gradient F%(X,t) we have, obviously

F(X,t) 5 -o < t < %
(3.3) Fa(X,t) = A A A A
F(X,t) + (t - t)A ; t <t st + k

. A
and the pair (F%,n%) then represents an (A,B,t) local linear con-
(2).

tinuation of (F,n)
Now, let E% € M be an (A,B,%) continuation of £ € M. Then we
make the following additional smoothness assumptions concerning
the response of the Maxwellian Non-Conductor under consideration.
() 1If E% and T denote, respectively, the stress and temper-
ature fields, at any time t € [t t+k1. at the particle X in the

process 5% then

A
(3.4.) 1i (T, (X,£))= T, (X,t)
1 po SR 0 3
A
(3.4,) lim (6, (X,t))= 6, _(X,t)
2 t-f  5E &
A A
3 1
@), 1If JE% denotes either DE%’ Eg%’ or Fg%, then when t ¢ [t,t+k],
A A A
(3.58) li$ EA(FA(X ,t); n%(X t)3Xst) = JE(F(X,t);n(X;t);X;t)
t-»

Now, as E% € M, the constitutive equations (1.21) - (1.23)

will be compatible with thermodynamics only if

(3.6) + F§ T FA > 0

-pe,, *+ pO, .1
2 £4Eg Ep t

is satisfied at all points (X,t) where X # Y(t). In particular, at

(33 Such continuations have been used by Gurtin [ 3] and by Wang §&
Bowen [4].
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A A
each t ¢ [t,t+k] we must have

(3.7)  (FF'Ty, (X,) = D, A + (8, (X,t) - Eg B - pF,, 2 0
T t

& g &

where we have made use of(3.22), (3.3), and (1.21) - (1.23) with

£ = E%. In (3.7) the argumentsof D, , E,,, and F

are Fa(X,t),
£ £4 t

g

A A
ng(X,t), X, and t. Since (3.7) is valid for each t € [t,t+d if
A
Wwe let t » t then, by virtue of (3.3) and the smoothness hypotheses

(M), (H2), and (H3) if follows that

-1 A A _ A AL A
(3.8) (F (X,t)TE(X,t) pDE(F(X,t),H(X,t),X,t))A
A A A A
+ p(eg(X,t) - EE(F(X,t);n(X,t),X;t))B
A A A
- ng(F(X;t);n(X,t);X;t) >0 .

However, as A and B were taken to be any arbitrary real numbers,

A
and t is any time in the interval (-w,to), it follows from (3.8)

that in any process £ € M

(; 9) TE(X,t) = pF(X,t)DE(F(X,t);n(X;t);X;t)

(3.92) BE(X,t) = EE(F(X;t);n(X;t);X;t)

(3.93) - oFg(X;t);n(X,t);X;t) 20 - e FE(F(X;t);n(X,t):X;t)
at each (X,t) € R x (-w,to)

Remark 3.2 At each (X,t), where X # Y(t), (3.91) 3 (3.92) impls

that

(3.102) TE(X,t) = {pF(BFDE)}F(X,t) + {pF(aan)}n(X,t) + oFBtDE
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(3.102) 8, (X,t) = {BFE

£ IF(X,t) + {BnEE}n(X,t) + 3.E

£ g

These representations for ig and ég are, however, distinct from
those assumed in (1.21) and (1.23) as the terms pFatDE, atEE and
the various coefficients of F and ﬁ in the above equations are,

at most, continuous in the arguments F, n, X, and t.

4, Wave and Entropic Amplitudes

We now turn our attention to a study of the behavior of ac-
celeration waves in Maxwellian Non-Conductors of class 1. As a first
Step in this direction we show that every such wave must be
homentropic, i.e., that it satisfies [nl = [axn] = 0. We assume that
the conditions (H1l), (H2) and (H3) are satisfied so that the reprsent-
ations (3.91) and (3.92) are valid for each § ¢ M. It then follows
that for each £ € M, TE(X,t) is a continuous function of X for all

X € R. So, by (2.62) we have
(4.1) ppl€] = T(Y(t),£)[F)
However, if we take the jump of (1.22) we find that

E)t[FJ + (Eg)t[”] ’

(F(Y(B),t)3n(Y(t),t);Y(t)5t)

(4.2) [e] = (D

where (D,.), = D

£t €
and (EE)t = EE(P(Y(t),t);n(Y(t),t);Y(t);t). But, by (3.91) it is
clear that TE(Y(t)’t)/QR = DE(F(Y(t),t);n(Y(t),t);Y(t);t) as

Pp = p(Y(£))F(Y(t),t). Thus combining (4.1) with (4.2) (and making

use of (3.92)) yields

.
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(4.3) eg(Y(t),t)[ﬁ] = 0

If, as is customary, we assume that eg > 0 in every process £ € M,
then (4.3) clearly implies that [n1 = 0 and the result follows from

the kinematical condition of compatability

(4.y) (nl = -Ut[BXn]

By making use of the fact that every acceleration wave is necessarily
homentropic, we easily establish a formula for the intrinsic

velocity Ut of such a wave; taking the jump of (1.21)

yields

(4.5) [T] = (A,).[F]

£t

where (AE)t = AE(F(Y(t),t);n(Y(t),t);Y(t);t). However, as TE is

continuous, Maxwell's theorem tells us that

(4.6) [T] = —Ut[BXT]

and if we combine this result with (2.61) and (2.31) we easily find
(4.7) [T = -U,p,[%] = e UE)
t"R Pt

Then, a comparison of (4.5) and (4.7) yields:

Thzorem 4.1 The instrinsic velocity U, of an acceleration wave

in a Maxwellian Non-Conductor of class 1 is given by

2 _
(4.8) Ut = (Ag)t/pR

where (AE)t z AE(F(Y(t),t);n(Y(t);t);Y(t);t) .
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In order to consider the growth behavior of acceleration waves in

Mawwellian Non-Conductors we now make use of the equation ([5])

du 2 .
(4. da _a "t 1_(3°F 1 _ y2(3F
9) 2 3¢ U, 3t ¥ o Lstaw! -~ Uilsy!

whose derivation is based only on the conditions which define an
acceleration wave, our smoothness assumptions on the extrinsic

body force, and the law of balance of momentum.

Remark 4.1 We will use our constitutive equations to calculate

faxatTE]. As in Coleman, Greenberg, and Gurtin [5], we may

then replace [3,3,T,] by [3X3tT€].
Now, at all points (X,t) # (Y(t),t), we

differentiate (1.21) thru w.r.t X so as to obtain

(4.10) axat'rE = AEBXF + Bgaxn + {(BFAE)BXF
+ (anAE)aX” + BXAE}F + {(aFBE)aXF + (ant)axn
+ ang}” + (ach>aXF + (ancg)axn + axcE

Taking the jump of (4.10) and making use of our smoothness assumptions

on A B., and CE’ the fact that the wave is homentropic, and theorem

2

4.1, gives us

_ 2 . _ . 0
(4.11) [3X3tT£] DRUt[BXF] = (BE)t[aXn) + (SFAg)t[F]faxF]

+ {‘3rAg)t(3xF)+ + (anAE)t(BXn)+ + (3,A) JIF]

+ (A B (aFBE)tﬁ+ + (3,0, Ja,F]

£
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where the t subscripts on the quantities enclosed in parentheses
indicate that they are to be evaluated at the wave, i.e., at

(Y(t),t). Now, as the wave is homentropic it follows that

od pta L cw .
(4.12) 0 = T [nl = [R) + Ut[axn]

The quantity [A] is called the =ntropic amplitude. If we set

+ +
(4.13) v (0 .A ) (B, F) + (3_A )t(axn) + (aXAE)t

t FEt X nég

(4.14)

s 4 o4
By (aFAE)tF + (BFBE)tn + (ach)t

then use of (4.13), (2.31), and (2.32) enables us to rewrite (4.12)

in the form

-(B,) (3,A,)
200 $1 - tay o BFfPe 2
(5.15) (0,0, T, ~ ppulra Fl = —Uf_ [#i) —U-g— a?(t) I
t

fa v
t t
+{67 - ﬁf'} a(t)
+ t

In order to proceed further, we must relate the entropic amplitude
to the amplitude a(t) of the wave. To this end we differentiate

(2.52) thru w.r.t. X and find that

(4.16) ORBXE = TgaxF + FaxTE + pRBXr

TEaXF + pRFQ - pRFb + pRBXr

where use has been made of (2.51); we remark that all the terms on

the right hand side of (N.lsl) exist and are continuous, at all points
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away from the wave, by, virtue of (3.91), our smoothness assumptions
on D_and r, and the conditions which define an acceleration wave.

Thus, taking the jump of (4.162) yields

. 1
1 = =
(4.17) [8X€J T

or E(Y(t),t)[BXF] + (XF] ~ b(Y(t))(F]

On the other hand, if we differentiate our constitutive equation

(1.22) for € thru w.r.t. X we obtain

(4.18) 3,6

D3, F + Egdyen + ﬁ{(aFDE)aXF + (anDE)ax“ . 8XD€}

g £

+

n{(aFEE)QXF + (anEE)axn + BXDg}

+ (aFF )axn + 3,F

)aXF + (BnF xFe

g £

Once again, all the quantities appearing on the right-hand side of

this equation exist and are continuous at all points away from the

wave and so taking the jump of (4.18) yields

(4.19) [8Xs] (Dg)t[aXF] + (Eg)t[axn] + (BFDE)t[F][aXF]

+

{(3.D.). a ;)" + (3, D

+ .
D) (3y ) )"+ (3,Dp) I

3

o4 o4
+ {(aFDg)tF + (3FE€)tn + (BFFE)t} [BXF]

where, as before, the t subscripts indicate that the quantities in

the parentheses are to be evaluated at the wave. Now set

+ +
(4.20,) v, = (aFDE)t(axF) + (3nD£)t(8xn) + (aXDE)t

.+ ot
)tF + (SFE J,n + (QFF

(u.202) $ £t

(BFDg E)t
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. 1 _ .
Since 5 TE(Y(t),t) z (DE)t and (EE)t z BE(Y(t),t) a comparison of

(4.17) with (4.19) yields the result:

(4.21)  8.(Y(0),0I3,A1(H) = [%F] - (3D [FIlayF)

- Gy, * BOENDIFY - §,(3,F]
Since,
(4.22) (#F1(6) = a(O)F + O F + a)™)

a(oy{#* - @'/ - 1/u, a%(t)

if we make use of (2.3), we may rewrite (4.21) in the form

. _ 3 2
(4.23) SE(Y(t),t)[axn](t) =z {(aFDg)t/Ut - 1/Ut}a (t) + Hta(t)

where we have set

(4.24) H, def 1

+ eyt 2
- () /Ut + Yt/Ut + b(Y(t))/Ut - Gt/Ut

Finally, (4.12) leads us to the following

Theorem 4.2 The entropic amplitude of an acceleration wave which

is propagating in a Maxwellian Non-Conductor of class 1 is related

to the amplitude a(t) of the wave by

(n.25)  [RICO) = sy (a - (3p0,) /u)a’ (1) - H,U,a(6))
E ’

Remark 4.2 As (4.25) shows, in a general Maxwellian Non-Conductor

of class 1 the entropic amplitude is not proportional to the ampli-

tude of the wave. In order for the two amplitudes to be proportional

—— m—— e———

it is necessary and sufficient that




~
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. e
h (4.26) (3:D), = U = (Ap) /og

Now, by (3.101), it is clear that a representation of the form

(4.27) T, = (pdDF + (ppd DR+ ppd Dy

exists for ig’ at all X # Y(t), but, as we have already pointed out,
this representation is, in general, distinct from the one given by
the constitutive assumption (1.21); a conclusion such as (4.26) is,
therefore, not possible in the general case. In a simple non-
conductor with fading memory, which is sufficiently smooth enough
to admit a representation as a Maxwellian Non-Conductor of class 1,
the condition expressed by (4.26) is fulfilled as is demonstrated
in the appendix.

If we now substitute the expression for the entropic amplitude,

as given by (4.25), into (4.15) and make use of (3.92), we find that

1 2 . s L 2
(4,28) EE [axatTé] - Ut[BXF1 = ata(t) + Bta (t)
where
(4.29) ooa. 8L (B )y H. /(). - u.sud - v U
, : Rt E't t E't t t t t
t def 3
e
] (4.30) PB4 {(B) (3pD, ) = (Ep) (3pAL) /(Ep) U
1
r - (B) /(EQ). U,

Finally, so as to be able to employ (4.10), we calculate an
expression for dUt/dt. Differentiating (4.8) w.r.t. t yields the

following sequence of results:
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du
t dt

t
1

(4.31) 20U & (AP, 05 n¥E)36)3¥(H)50))

1lim {€3 A DNC(3 F) —— + (3,F))
xv«pyt  FE t

dX dXx
+ (3 A )((an) a } (8 n)) + (aXAE) T ! (9 Ag)}

n'g

_ + + + +
= (aFA€)t {(BXF) Ut + (BtF) } o+ (anAE)t{(aX") Uy + (Btn) }

+ (9 AE t Ug * (atAé)t

2

If we divide both sides of (u. 31 ) thru by ZpRU and make use of

(4.2) we find that (3)

t

au + +
= (aFKE)t {(BXF) u, * (atF) }

Q.

1
(4.32)
U

+ +
+ (8an)t {(axn) u, + (atn) 1o+ (axxg)t U, + (atKE)t

(3) 1If pp is not constant over R there appears on the left hand

side of this equation the extra term (axpz) Ut/ZQ; .

]
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] A 1/2
* where we have set KE def tn Ag .

(4.32) we are led to the following result:

Combining (4.10), (%.28), and

Theorem 4.3 The growth behavior of the amplitude of an acceleration

wave which is propagating with intrinsic velocity Uy in a Maxwellian

Non-Conductor of Class 1 is governed by the differential equation

da(t) _ 2
(‘4.33) 2 T{_—— = ota(t) + B'ta (t)
where, ¢ def 1 iEE + o is determined by (4.32) and (4.29) and
> Oy U, at £? y ir. ¥

By is defined by (4.30) .

Equation (4.33) is, a differential equation of Bernoulli

type; in general, the coefficients o, and B, will be rather com-
Plicated functions which involve, not only the values of various
constitutive quantities and their derivatives at the wave, but also

the values of both the spatial and time derivatives of the deform-

ation gradient and the entropy just ahead of the wave. Certain
simplifications occur, however, if we assume that the wave is pro-
' pagating into a homogeneous rest region of the body, which we define

as follows: Let £ = (x,n) be a process in M and let

} o= {(X,t) | X = Y(t), —w<t<to} denote an acceleration wave re-

lative to £ which is propagating in the body with intrinsic velocity

region in the time interval [0, to) if (i) for 0 < t < t and X 2z Y(t), |

_- |

F(X,t) = Fo=const. and n(X,t)

nénconst. (ii) AE’ BE,...,IE are |

f Ut' Then the wave is said to be propagating into a homogeneous rest
:

3

' t <t  and X 2 Y(t),

A

all constant in X and t for 0
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Thus F'@ = (axr)+ A caxn)+ = 0 and, for 0 s t < t_and X 2 Y(t),

AE(F(X,t); n(Xst); X3t) = AE

IE(F(X,t);n(X,t);X;t) z IE(Fo;no;X;t) = IE .

(iii) pR(X) = p, = const., for X = Y(t) {in the case where Pr is not

(F, ng» X, t) = AZ,...,

already assumed constant over all of R }.

AO
It is then clear that U2 = & = U = const., 0 s t < t_, and
t po (o) o

(4.34) v, = (3 ), = lim, 3 (F 3 n ; X3t) =0
t et %ov ()" x*eFod Mo
(4.35) ut = (BFCE)t = X+Y%t?+ aFCE(Fo; no; X3;t) = (aFCE)o = const.
(4.36) Yy = <8XD5)t = X+Y%t?+ axDE(Fo; no;X;t) = 0
(4,37) Gt = (3FPE)t = X+Y%t?+ aFFE(FO; no;x;t) = (aPFE)O = const.

= 2
(4.38) Ht = b(Y(t))/Uo - (BFFE)O/UO

However, by (2.51), (3.91), and our smoothness assumptions on b,

(4.39) b (Y(t))

ot +

o+ +
pR{x - (3.D,) (axr> - (ann

+
FPe)¢ (axn)

gt

- (SXD

E’t - (atng)t} = 0,
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as all the terms on the right hand side of this equation vanish.

It then follows that

- 2 _ _
(4.40) Ht = (aFFE)o/Uo z Ho = const.

In view of (4.34) - (4.38) and (4.40), (4.29) and (4.30) now assumc

the relatively simple forms

21 o) o 2 - -
(4.41) a, = 5; {BEHO/EE - (ach)o/Uo} = a, = const.

-1 o _ O 0,3 _ 0,0 _ -
(4.42) Bt = 5; {[BE(BFDE)o E (BFAE)O]/EEUo BE/EEUO} = BO con1

Corollary: The growth behavior of the amplitude of an acceleration
wave which is propagating into a homogeneous rest region of a Max-
wWwellian Non-Conductor of class 1, in the time interval [O,to), is
governed by the differential equation
da(t) 2
. —— = + .
(4.43) 2 3t aoa(t) BO a“(t) 3 0 s t < t,

where e and Bo are the constants given by (4.41) and (4.42).

5. Acceleration Waves in Maxwellian Non-Conductors: Growth and

Decay Behavior

The solutions of the differential equations (4.33) and (4.u43)

are well-known as these equations and various special cases of them
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have arisen frequently in studies on the growth behavior of ac-
celeration waves in non-linear materials of various kinds, i.e.
see [2] [5], or [6]; we record here the appropriate results

as they apply to acceleration waves in Maxwellian Non-Conductors
of class 1. Consider the differential equation (%#.33) and assume

that Ut >0, O

IA

t <t . Itis easily verified that, by virtue
o
of our smoothness assumptions on the constitutive quantities A ,...I

and the conditions which define an acceleration wave, the coefficients

o, and B are continuous functions of t for 0 < t < t,- If
def .. . e s .
a(0) == 1im, a(t) exists, then it is a consequence of the uniqueness
t-~+0

of solutions of (4.33) that a(t*) = 0 at some time t* ¢ fO,tO) implies
that a(t)=0 for all t ¢ [O,to). So, assume that a(t) # 0, 0 < t < t

We can then state

Theorem 5.1 The amplitude a(t) of an acceleration wave which is

propagating in a Maxwellian non-conductor of class 1 in the time

interval [O,to) is given by

(1)
5.1) a(t) = 2lo) e , 0st o<t

1o 2le) gt g WD

. . . t Sl T
here B, is defined by (4.30), ¥(t) = -1/2 I, o dv and o = 5~ gx * %

where U, (the intrinsic velocity) satisfies (4.32) and a, is deiined

by (4.29).

Now Trewrite (5.1) in the form
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g
. (t)
i (5.2) a(t) _ eVt
% ' a(0) 1 + a(o)I(Y)
& where
b (5.3) I(t) = - 1 f:2 f’; BTe-w(T)dr.
In the general case we can say very little about the growth be-

%~ havior of the amplitude a(t). If, however, the Maxwellian Non-
- . .
s Conductor is such as to satisfy (4.26) then (4.30) clearly reduces
3 to By = - (8F Ag)t / (As)t U,

{
g and if we set LA 1/2 By = (aPAE)t / 2(A€)t Uy (5.3) becomes
] _ ¢t ~y(T1)
: (5.4) I(t) = [ 7 e drt

(4)

f Clearly I(0) = 0. Moreover, ggn I(t) = sgn (aFAE)t , and T{t)

is striectly monotone for 0 s t < to’ provided (aPAF)t £ 0, 0 st < to;

this last statement follows from the continuity of aFAE which

guarantees that (BFA is of fixed sign for 0 < t < tg if

£t
(aFAE)t 2 0 on [O,to). Finally we assume that the material

and the process just ahead of the wave are well-behaved in the sence

that (3,7 (t), (P, umt), (), (), (3,4

£t E)t

(BXDE)t’ (Eg)t’ (BF:JE e and (aF}EJt alil

(4) Since we are assuming that Ut'>'0, 0 s t < t s we also must

have (AE)t1> 0, 0 st <t
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have finite limits as t*to; then, not only are both ¢(t) and I(t)
continuous for 0 s t < to, but they have finite limits w(to) and

I(to), respectively, as t+to.

Remark 5.1 When (4.26) is satisfied, our governing equation for

the amplitude a(t) is

g
da _ t + 2 _
(5.5) ‘—dt -2——a TTt a =0

The most important consideration here is the form of the co-

efficient = If we call (A,), the instantaneous tangent modulus

£} £/t
at the wave and <8PAg)t the instantaneous second-order modulus at

the wave, then this coefficient has precisely the same form as that
of its counterparts in the Bernoulli equations arising, for ex-
ample, in the studies [2], [5] and [6]. A broad analysis of the
local and global behavior of acceleration waves whose amplitudes
obey Bernoulli's equations of the form (5.5), in which L the

coefficient of the term az(t), has the form

n
(5.6) Ty Et/ZEtUt

n
(with Et and Et being, respectively, the
tangent and second-order tangent moduli,
particular material under consideration)

by Bailey & Chen in [7] and [8]. 1In all

appropriately defined
at the wave, for the
has been carried out

instances where Bernoulli

equations of this form appear, in studies on the growth behavior

of waves propagating in non-linear materials, the intrinsic velocity

U, satisfies the relation
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? ' (5.7) Up = E/eg
¢ t . .
_ where Pe = eR(X)IX - y(ry © The uiual assumptions which are then

made are that Ut > 0, p; > 0, and Bt # 0 (the constitutive assump-
tions, in all cases, guarantee that Et is a continuous function

of t); these, in turn, lead to the conclusion that sgn I(t) = sgn Et
and all subsequent analysis, of the qualitative behavior of the

amplitude, a(t), is based on this fact and the continuity of I(t).
Following Coleman, Greenberg, and Gurtin (5] we set

(5.8) A(t ) = -1/I(t)

o o

Then we have the direct analogue of Remarks 3.4,3.5, and 3.6 of [5]

which we state without proof as

Theorem 5.2 Consider a Maxwellian Non-Conductor of Class 1 in which

(4,.26) is satisfied for every E ¢ M. Let & be any process in M and

! an acceleration wave, relative to £, which is propagating into

the body in the time interval [O,to). Then (i) If either

ey

: a0y} < lA(to)l or sgn a(0) = sgn (3 .A.),, then a(t) remains bound-

R 4

a finite time t_¢ (O,to)

our assumption that | is

out (O,to)).

then a(t) is continuous for 0% t ¢-t°, but Ja(t)l+» as t—>to.

i FEt

g ed throughout the closed interval [O,tOJ. (ii) 1If

|

@ sgn a(0) = - sgn (aFAE)t and la(0)} > Il(to)l , then there exists
}

such that lim Ja(t)|
>t

an acceleration wave

(iii) If sgn a(0) = - sgn (aFAg)t and l|a(0)]| = |A(to)|

»} (this contradicts

relative to £ through-
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Now consider an acceleration wave which is propagating, in
the time interval [O,to), into a homogeneous rest region of a Max-
wellian Non-Conductor of class 1; the governing equation for the
amplitude is, in this case, (4.43) where & and 60 are constants
which are defined, respectively, by (4.41) and (4.42). We

rewrite this equation in the form

da Y Yy 2
——— + =
(5.9) ax a a + E a 0
where g = -1/2 o and % = -1/280. Then as a direct analogue of

Theorem 5.1 of Coleman, Greenberg, and Gurtin [51 we have

Theorem 5.3 Consider an acceleration wave } which is pro-

Pagating into a homogeneous rest region of a Maxwellian Non-Conductor
of class 1 in the time interval [O,to). Then, if e and BO, as
defined by (4.41) and (4.u42), respectively, are non-zero, the ampli-
tude satisfies
¥
(5.10) a(t) = 7 % , 0 <t < t,
Groy - D™ + 2

where
(5.11) ¥ def _ ao/B
= U {ES(3;C,), - BH U vy BY(ORD), = (3 ES - Bgug
= - 5— (B /EY - (3cp /Ul) = {B°(a PFp) o /ED
[&]

+ (3pCp) )
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Remark 5.2 The expression (5.10) above is valid only under the
assumption that both ao#O and BO#O. If we assume that Bo¢0

but that (3FCE)0 = 0 and B°=z0 or (BFFg) = 0 then the formula for

the amplitude takes the form

2a(0)

(5-12) a(t) = 5 = BoaIO)t

» 0 £t < to

and it is clear that Ja(t)+«, whenever sgn Bo = sgn a(0), as
tt = 2/60a(0) provided, of course, that 0 < 2/60a(0) < to. If
either sgn 8 = - sgn a(0) or sgn B_ = sgn a(0) but 2/803a(0) 2 T

a(t) is continuous for all t ¢ [O,to).

Finally, if we define constants VO and wo by

def o o} 2
(5.131) V0 Eg (Bch)o - BE HOUO

def o _ © _ 0 2 (5)
(5.13,) W Bg (aFDE)o (BFAE)O EE Be Ug

s v,
then we may rewrite Kk in the form

(5.14) €=UV /W
O O (o]

Following, once again, Coleman, Greenberg, and Gurtin [3], let us
agree to call the wave weak if [a(0)| < |X] and strong if {a(0){>IX[,

where ) = k(to). Then the assumptions

(5.15) VO < 0, Wo £ 0, Uo > 0, Po > 0
imply that a(t) + 0, monotonically, as t + ® when the wave is weak or
when sgn a(0) = sgn Wy. If the wave is strong and sgn a(0) = -sgn a1,

then |a(t)| + « monotonically in finite time.

(5) Wo z - (QFAE)OEU if the material satisfies the condition
expressed by (4.26)

PO I S
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Appendix:

Simple Non-Conductors as Maxwellian Non-Conductors of Class 1

We sketch here an outline of the proof that every simple non-
conductor exhibiting fading memory in the sense of Coleman [1] may
be viewed as a Maxwellian non-conductor of class 1 provided certain
smoothness asumptions, analogous to those employed in [5],

are imposed on the response of the material.

Let F' and ot denote the histories up to time t of the de-
formation gradient and the temperature respectively, at a fixed

material point X; these are real-valued functions defined by

(A1) FY¥(s) = F(t-s)

Bxx(x,t-s); 0 s s <=

(A.2) 8t (s) B(t-s) = 0(X,t-s)3 0 < 5 < o

Then the constitutive equations of a simple rion-conductor are

t

(A.3) T(t) = I1(F5,n%)
(A-4) o(t) = 6(rf,nt)
(A.5) cct) = e(rt,nh
(A.6) qtt) = aFtnt,e) = o,

where g(t) = 8X6(X,t) is the temperature gradient. We assume that
the material is homogeneous and that a homogeneous reference con-

A
figuration has been chosen so that the response functionals 1,86,
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A
and e, are independent of X. Let h be a fixed influence function,
i.e., a positive monotone decreasing,function in Co[o,w) decaying

+

fast enough to zero so as to be square integrable. Let At = (Ft,n')

t

be a pair of histories and define the norm ||At|| ® of At to be

t,,90 t t t t
7 P TV T T TR T T TR T S IR I CRY

where F; and n; denote the restrictions of Ft and nt to the interval

(0,») and where

(A.8) [1£112 = [2)1£¢s) Ints) as

A
We assume that there exists an influence function h such that 1,6,

A . . e et
and €, have for their common domain of definition an open subset
D of the function space;(<composed of those function pairs

t . . .
A = (Ft,nt) whose norm IlAtHo is finite. 1In addition, we as-

sume that I,g, and ¢, are C' functions over D w.r.t. l|'||0,i.e.

if f denotes either 1,6, or é, then f has at each AteD a first
order Frechet derivative Gof(AI-) which is a continuous linear func-
tional over ;( and has the property that for all functions Q in

Lith A% + @ in D
(4.9) £AY + @) = raty + 8%ty + 001D

Now, in terms of the past histories, the constitutive equations

A.3 ~ A.5 may be written in the form

t

t
(A.10) T(t) = I(E,,n53F,n)

i I . 2. S . e a0 o




A
(A.11) 6 = e(Fﬁ;nﬁ;r;n)
(A12) e = e(FEintiF.n)
r’ r’ b

A
F(t) and n = n(t). If f stands for either 1,6, or 2,

where T
A.12, then the smoothness assumption (A.9) (fading memory)

implies the existence of differential operators DF,Dn,GF,Gn which

operate on f to yield functionals DFf,an,GFf,an as follows:
Let AY = (Ft,nt)sD and geHh where Hh is the Hilbert space of all

real-valued functions on [0,») satisfying llgllh < », Then,

(a.13)  DE(FEin®) = Zp £(FLsnlsF,n)
(A.28) D E(FSn®) = g E(FEInTFsN)
(a.15) 8 £(FYntlg) = & £(FL + vgnliFsml
(A.16) Snf(Ft;nt!g) = %3 f(Fﬁ;n; + vg;F;n)Iv=0

where the partial Frechet derivatives 6Ff and an are jointly con-

tinuous in all their arguments including g, and are linear in g.

By the Reisz representation theorem this implies, in particular,

for £ = 1, the existence of functions Kt and Lt in Hh satisfying

(4.17) s.£(F%,nt|g) = [Tg(s)K (s)n(s) as

11}

(a.18) ‘snf(rt,nt|g> f:g(s)Lt(s)h(s)zds
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A A
Now let Kt and L, be the unique solutions, respectively, of the

t
systems
da 4 _ A 2.A - t _t
(A.19) I Kt(s) = Kt(s)h(s) ,Kt(o) = DFI(F sN )
a » _ A 2.0 - tt
(A.20) = Lt(S) = Lt(s)h(s) ,Lt(O) = D I(F )

A A . . t .
Clearly Kt and Lt will depend on the histories Ft and N , i.e. we

may write

t t

(A.21) K. (8) = K(F s)

(A.22) L.(s) = L(EY;ntss)

The functions ﬁt and ﬁt are called, respectively, the stress-

strain and stress-entropy relaxation functions for the material.
We assume that the following smoothness assumptions are satisfied:
For each fixed é, K(*,*,8) and L(*,*,8) are continuous functionals
over D. For each fixed pair (Pt,nt)eD, K'(Ft;nt;s) and L'(Ft;n;s)

are differentiable functions of s,i.e., for Oss<w

t t t t

1 1]

(A 23) L"(F 38) K'(F

Q:IQJ

s)

ot tont

(A.24) L"(F s) L'(F 38)

[ovd (-3
0

exist and, moreover, satisfy
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(A.25) K"(Ft;nt;°)h(')zeﬂh
(A.26) L"(Ft;nt;')h(')zeHh

Finally, we assume that for each pair (Ft;nt)eD
(a.27) KT (S0t nc) 2ed
(4.28) L' (F55n T once Zen,

Clearly, we may rewrite (A.17) and (A.18) in the forms

(A.29) SpICF 5" ) = [Tr(s)K' (F¥inT;s)ds

(A.30) an(Ft;ntIg) [Tg(s)L' (F¥5nT;e)ds

In a similar fashion, if we take f=$, we find that

(A.31) GFe(Ft;nt g) f:g(s)M'(Ft;nt;s)ds

(A.32) snécrt;ntlg) [2a(eN (F5n"5s)ds

A - t _t A - t _t .
where Mt(S) = M(F";n ;s8) and Nt(s) = N(F";n ;s) are, respectively,
the energy-strain and energy-~entropy relaxation functions for the

. . t _t Mt t t t
material; they satisfy M(F ;n ,0) = DFE(P 3N ), N(F " ;n ;0)
= Dne(Ft;nt) as well as all the smoothness conditions laid down

for K(Ft;nt;s) and L(Ft;nt;s). Finally

A ® .
(A.33)  8.6(Fin%|g) = [og(s)P'(FF,n";8)ds

AT WA L
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g (A.34) snS(rt,ntlg> = [JeIR (FEintis)as

A A
where Pt(s) = P(Ft;nt;s) and Rt(s) = R(Ft;nt;s) are, respectively,
the temperature-strain and temperature-entropy relaxation functions,

A
and P(Ft;nt;o) =DFB(Ft;nt),ﬁ(Ft;nt;0) z Dna(Ft;nt) and once again,

the smoothness conditions laid down for K(Ft;nt;s) and L(Ft;nt

t

38)
. . t _t t
are assumed to be satisfied by P(F jn ;8) and R(F ;n ;s).
g Now, our smoothness assumption (A.9), where f stands for either
A
1,0, or ¢ allows us to differentiate each of these functionals w.r.t.

time so as to obtain

(A.35) T DFI(Ft;nt)f + DnT(Ft‘nt)ﬁ

t _t).t t.atyet
+ §.I(F 5 Irr) + anlcr 307 Inp)

K(Ft;nt;O)f + L(Ft;nt;o)ﬁ

s 2 xSt eEles) + L (FnTiednl(s) 1ds

(A.36) €

s A .
Drg(Ft;nt)P + Dns(Ft;nt)n
At tiat At tyet
+ 8-e(F 3n IPP) + snc(r N lnr)

m(FEint o0F + N(FE;nt;00m

"

+

f: {M'(Ft;nt;s)?;(s) + N'(Ft;nt;s)ﬁg(s)} ds

A . A °
D8 (FE3n®IF + p BC(FY,n)é

De
]

(A.37)
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-+

Aot tist At tiet
§p8(F 50 |Fr) + Gne(Fr’annr)

3 = P(FE;nt;00F + R(FE;nts00m

+

[P (FYntie)El(s) + RU(FTin"is)nt(s) bas,

where each of the above results is clearly valid only at those
points (X,t) where both F and ﬁ exist. Now let uX(Ft,nt,s) stand
for any one of the relaxation functions introduced. We shall assume
that the reference configuration R has been chosen so that each of

. +
the following maps from R x D + P are of class Cl w.r.t. the norm

||'||Q (continuously Frechet differentiable):

Tt

(A.38) (X; F 3N ) > uX(F 30)
(A.39) (X:FE5n®) > uh(Fsn t0)
(A.40) (X;Ft;nt) -> [:ua(Ft;nt;s)Fﬁ(s)ds.

Finally we assume that D is sufficiently large enough to ensure
+

there exists a non-empty open subset/ of R+ X R such that, for

any fixed (Ft;nt)eD.A(°)sD whenever A eal where

(A ul1) A(s) ={A ; s=0
t, ..t .
(Fr(s),nr(s)) y 8>0

In particular, this is satisfied if we choose A=(Ft(0),nt(0)). We
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shall now exhibit a class ﬁ of pairs (x,n) where X is a motion
of R and n and entropy density function, which is such that the
simple non-conductor defined by (A.3) - (A.6) and satisfying the
smoothness conditions above, is a Maxwellian Non-Conductor of
class 1 relative to &. We require, explicity, that each (x,n)eM
satisfy the following conditions; (i) x contains, at most, an
acceleration wave of order 2 (ii) n is continuous jointly in X and
t while ﬁ, axn,ﬁ,axﬁ, and axzn have, at most, jump discontinuities
across ] but are continuous in X and t jointly everywhere else.
(ii1) {F%(x,+),n"(X, )}eD for each X € R and for all (X,t),{F(X,t),
n(x,))ed (1v) the maps, (X,t) » FL(X,+), and (X,t) » ni(X,*),
from Rx(—w,to) +> Hh are CT (continuously Frechet differentiable).
The last hypothesis implies the existence in Hh of the deri-
vatives f;(x,‘) and ﬁﬁ(x,~> of , respectively, the maps t » FE(X,')
and t » nE(X,') from (-w,to) into Hh' Thus both Fi and n; are

absolutely continuocus and the following relations hold for almost

all s in (0,»):

(A.42) f;(x,s) -asFﬁ(x,s)

(A.43) ﬁi(x,s) -85 (X,s)

Thus we may rewrite (2.35), (2.36), and (2.37) in the forms

(A.ub) T = k(ESS0F + LerSntoon - JTIK (EE 0t L), FEGh)

+ L'(Ft;n;tb)abni(b)}db
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(A.45) e = M(E %, OF + NF 0000 - 50 (75T b)a, Pl )
Lot Lt t
+ N'(F",n ,b)abnr(b)}db
(Au6) & = P(FE,n%,00F + RCEE 05,000 - [O{P' (FE,n",b)0, FL(D)

R’(Ft,nt,b)abn;(b)}db,

which are valid at all points (X,t) away from the wave ]. Employing
integration by parts, in each of the integrals above, we find that
the constitutive equations (A.u44) - (A.46) may be written in the forms
(1.21) - (1.23) where the functions AE’BE’°"’IE are defined

as follows:

(A.47) Ag = x(rtint;0)
B = L(rt;nt;0)
c, = K (rEintior + Lt intioom
¢ [P ST BFED) + L E Tl ) ab
(A u8) Ce = M(FEsnt;0)
Eg = NCEE;nt50)
F, o Mt (FEantioor + Nt et inT;00n
+ 120 T b (b) + N"(FTintbIn (b Jab
(A.49) 6, = P(F55nT50)
7 t _t :

H, = R(F ;n 30)

[

t

I. = P'(FE;nt00F + RY(FEint;0)n

[l

+ [2ten (Yt pIF (D) 4 R*(FT5n"5bIn’ (b)}db
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¢
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k‘ By our smoothness assumptions on the response of the simple non-
A
f conductor, and our hypothesis concerning the class M, each of the

functions Ag’Bg"°" Ig above is clearly of class C1 in the arguments

F’n,x, and tq
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